Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 157-163, 2020.
Article in English | WPRIM | ID: wpr-903901

ABSTRACT

Chronic inflammatory airway diseases, such as chronic rhinosinusitis, chronic obstructive pulmonary disease, and asthma, are associated with excessive mucus production. Hence, the regulation of mucus production is important for the treatment of upper and lower airway diseases. Eupatilin is a pharmacologically active ingredient obtained from Artemisia asiatica Nakai (Asteraceae) and exerts potent anti-inflammatory, anti-allergic, and anti-tumor activities. In the present study, we investigated the effect of eupatilin on phorbol 12-myristate 13-acetate (PMA)-induced MUC5AC and MUC5B expression in human airway epithelial cells. We found that eupatilin treatment significantly inhibited PMA-induced mucus secretion in PAS staining. In addition, qRT-PCR results showed that eupatilin dose-dependently decreased the mRNA expression of MUC5AC in human airway epithelial cells. Western blot and immunofluorescence assay also showed that PMA-induced protein expression of MUC5AC was inhibited by eupatilin treatment. Finally, we investigated MAPKs activity after stimulation with PMA using western blot analysis in human airway epithelial cells. The results showed that eupatilin downregulated the levels of phosphorylated p38, ERK, and JNK. In summary, the anti-inflammatory activities of eupatilin, characterized as the suppression of MUC5AC expression and secretion in human airway epithelial cells, were found to be associated with the inhibition of p38/ERK/JNK MAPKs signaling pathway of MUC5AC secretion.

2.
The Korean Journal of Physiology and Pharmacology ; : 157-163, 2020.
Article in English | WPRIM | ID: wpr-896197

ABSTRACT

Chronic inflammatory airway diseases, such as chronic rhinosinusitis, chronic obstructive pulmonary disease, and asthma, are associated with excessive mucus production. Hence, the regulation of mucus production is important for the treatment of upper and lower airway diseases. Eupatilin is a pharmacologically active ingredient obtained from Artemisia asiatica Nakai (Asteraceae) and exerts potent anti-inflammatory, anti-allergic, and anti-tumor activities. In the present study, we investigated the effect of eupatilin on phorbol 12-myristate 13-acetate (PMA)-induced MUC5AC and MUC5B expression in human airway epithelial cells. We found that eupatilin treatment significantly inhibited PMA-induced mucus secretion in PAS staining. In addition, qRT-PCR results showed that eupatilin dose-dependently decreased the mRNA expression of MUC5AC in human airway epithelial cells. Western blot and immunofluorescence assay also showed that PMA-induced protein expression of MUC5AC was inhibited by eupatilin treatment. Finally, we investigated MAPKs activity after stimulation with PMA using western blot analysis in human airway epithelial cells. The results showed that eupatilin downregulated the levels of phosphorylated p38, ERK, and JNK. In summary, the anti-inflammatory activities of eupatilin, characterized as the suppression of MUC5AC expression and secretion in human airway epithelial cells, were found to be associated with the inhibition of p38/ERK/JNK MAPKs signaling pathway of MUC5AC secretion.

3.
Korean Journal of Physical Anthropology ; : 187-196, 2014.
Article in Korean | WPRIM | ID: wpr-194020

ABSTRACT

Previous researches have proved that Pueraria lobata up-regulates bone mineral contents and bone mineral density in bone-loss model, ovariectomized mice and orchidectomized rats. However, the precise effects and mechanisms of Pueraria lobata on osteoclast differentiation and bone resorbing activity of mature osteoclasts still remains unknown. Therefore, we investigated the effect and mechanism of Pueraria lobata on receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage colony stimulation factor (M-CSF)-induced osteoclast differentiation in bone marrow macro-phages (BMMs). First of all, we treated BMMs derived from mice with various concentrations of Pueraria lobata in order to perform screening by tartrate-resistant acid phosphatase (TRAP) staining. Also, we conducted western blotting and RT-PCR for the purpose of verifying the treatment mechanism of Pueraria lobata and lastly, we used hydroxyapatite-coated plate to evaluate the effects of Pueraria lobata on bone resorbing activity of mature osteoclasts. As a result, Pueraria lobata has inhibitory effect on phosphorylation of p38, Akt, c-Jun N-terminal kinase (JNK), and IkappaB which are essential early signaling pathway of osteoclastogenesis. Also, the inactivation of nuclear factor of activated T cells (NFAT)c1, and c-Fos which is caused by Pueraria lobata is followed by the suppression effects of Pueraria lobata on osteoclast-related various genes, osteoclast-associated receptor (OSCAR), TRAP, Integrin beta3, osteoclast stimulatory transmembrane protein (OC-STAMP), and dendritic cell-specific transmembrane protein (DC-STAMP). Particularly, Pueraria lobata blocks the formation of pit area on hydroxyapatite-coated plate in a dose-dependent manner as well as the mRNA expression of Cathepsin K, which is associated with bone resorbing activity. These results demonstrate the molecular mechanism relating to anti-osteoclastogenesis effect of Pueraria lobata as well as the inhibitory effect of Pueraria lobata on mature osteoclast formation and bone resorbing activity.


Subject(s)
Animals , Mice , Rats , Acid Phosphatase , Blotting, Western , Bone Density , Bone Marrow , Bone Remodeling , Bone Resorption , Cathepsin K , Integrin beta3 , JNK Mitogen-Activated Protein Kinases , Macrophages , Mass Screening , Osteoclasts , Osteoporosis , Phosphorylation , Pueraria , RANK Ligand , RNA, Messenger , T-Lymphocytes
4.
Korean Journal of Physical Anthropology ; : 91-99, 2014.
Article in Korean | WPRIM | ID: wpr-101641

ABSTRACT

As prediction of rapidly aging society, bone health is considered increasingly important and received more attention than ever. Bone health is regulated by balancing between bone resorptive osteoclasts and bone formative osteoblasts. Disruption of balance between bone-resorbing osteoclasts and bone-forming osteoblasts results in bone disease. Natural products have recently received much attention as an alternative tool for the development of novel therapeutic strategy. Baicalein is reported it has anti-cancer, anti-inflammatory and antioxidant effects. Baicalein also has been known that it has both promotive effect on MC3T3-E1 cell line and inhibitory effect on RAW 264.7 cell line. However, the inhibitory mechanism of baicalein using bone marrow derived macrophages (BMMs) on osteoclast differentiation remains not clear. In this study, the suppressive mechanism by baicalein on osteoblast differentiation was evaluated. Bicalein inhibited receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation in BMMs in a dose dependent manner without any toxicity. Baicalein suppressed phosphorylation of protein kinaseB (Akt), c-Jun N-terminal kinases (JNK) and phosphoinositide-specific phospholipaseCgamma2 (PLCgamma2). Furthermore, Baicalein suppressed the induction of RANKL-induced c-Fos and Nuclear factor of activated T cell c1 (NFATc1), essential genes on osteoclastogenesis. In BMMs, Bicalein inhibited the mRNA expression of tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), cathepsinK, dendritic cell-specific transmembrane protein (DC-STAMP). Moreover, baicalein promoted differentiation of osteoblast on bone marrow stromal cells (BMSCs). Taken together, these results suggest that baicalein has a potential for treating bone lytic diseases, such as osteoporosis, periodontitis, and rheumatoid arthritis.


Subject(s)
Acid Phosphatase , Aging , Antioxidants , Arthritis, Rheumatoid , Biological Products , Bone Diseases , Bone Marrow , Cell Line , Genes, Essential , Macrophages , Mesenchymal Stem Cells , Osteoblasts , Osteoclasts , Osteoporosis , Periodontitis , Phospholipase C gamma , Phosphorylation , Phosphotransferases , RANK Ligand , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL